

Evaluation of insect herbal repellent for sucking pests of cotton

K. SASIKUMAR*, R. VEERAPUTHIRAN AND R. VIMALA

Tamil Nadu Agricultural University, Cotton Research Station, Srivilliputtur - 626 125 *E-mail: entosasi88@gmail.com

ABSTRACT : Field experiments were carried out at Tamil Nadu Agricultural University, Cotton Research Station, Srivilliputtur to evaluate the insect herbal repellent activity against sucking pests of cotton (variety SVPR 4) under irrigated condition. The result revealed that spraying of organic insecticides *viz.*, 3G extract (10%), *Neem* oil (2%) and herbal insect repellent (10%), at 15 days interval was able to reduce the infestation of sucking insect pests like leaf hopper, thrips and whitefly during 2017-2018 and 2018-2019. The effect of application of 3 G extract (10%), *neem* oil (2%) and herbal insect repellent (10%) produced taller plants and more bolls / plant and these three treatments were comparable and significantly higher than untreated check. The mean, highest cotton *kapas* yield was recorded in 3G extract (10%) (16.6(5%)), *neem* oil (2%) (16.43%) and herbal insect repellent (10%) (16.31 q/ha) and were significantly higher than the untreated check (10.56 q/ha). The economic analysis revealed that highest total income (Rs. 67130/ha), Net income (Rs. 25330/ha) and Benefit cost ratio (1.60) were also associated with application of 3G extract (10%) which was *on par* with *neem* oil (2%).

Key words : BC ratio, cotton variety (SVPR 4), organic insecticide, sucking pests

Cotton, Gossypium hirsutum, a high value crop, occupies about 5 per cent of the total area under cultivation in India and consumes more than 40 per cent of the pesticides produced. This tendency of injudicious use of pesticides on cotton has culminated in pest outbreaks, development of resistance to insecticides by the insects and ultimately total crop failure. Cotton plant is ravaged by multitude of sucking pests and there is a constant change in pest scenario. Sucking pests like leafhopper (Amrasca devastans), aphid (Aphis gossypii), thrips (Thrips tabaci) and whiteflies (Bemisia tabaci) etc., are responsible for the major threat and destruction of cotton crop. Hence, the present study will be carried out the evaluation of insect herbal repellence against sucking pest in cotton.

MATERIALS AND METHODS

Field experiments were carried out at Tamil Nadu Agricultural University, Cotton Research Station, Srivilliputtur to evaluate the insect herbal repellent activity against sucking pests of cotton variety (SVPR 4) under irrigated condition (August to January) during 2017-2018 and 2018-2019. Untreated cotton seeds (SVPR 4) were sown. The crop was grown with recommended package of practices excluding plant protection. The five leaf herbal extract consists the leaves of the following Neem, Azhadiracta indica (1kg), Notchi, vitex negundo (1kg), Adathoda, Adathoda viscosa (1 kg), Ailanthus, Ailanthus excelsa (1kg), Zatropha, Zatropha curcus (1kg). The herbal plant leaves were collected, ground separately with cow urine @21/kg, mixed

together, kept in a 50 l. plastic container and allowed for fermentation for 15 days and then filtered and used for the study. Organic treatment was imposed when the leafhopper population crossed the economic threshold level, with a high volume knapsack sprayer using 500 l of spray fluid/ha. Second and third spraying was given at 15 days interval. The untreated check plot was sprayed with water only. The 3G extract consists of the following, ginger, zingiber officinale fresh rhizome (1kg), garlic, Allium sativum bulb (1kg) and green chillies, Capsicum annum (1 kg). The ginger, garlic and green chillies were purchased from the vegetable market, Coimbatore, ground separately with cow urine @ 21 / kg, mixed together, kept in a 25 l plastic container and allowed for fermentation for 15 days and then filtered and used for the study. The treatment herbal insect repellent (5%), Herbal insect repellent (10%), 3 G extract (5%), 3 G extract (10%), Mahua oil (2%), Pungam oil (2%), neem oil (2%), NSKE (5%), Beauveria bassiana @10g/1 and Untreated check. Observations were made from ten randomly selected plants in each plot. The population of sucking insect pests were recorded from three leaves / plant *i.e.*, nymphs and adults of leafhoppers, thrips and aphids from one leaf on top, middle and bottom of the plant and whitefly adults at weekly interval and expressed as per three leaves. The plant height during harvest, sympodia, monopodia and bolls / plant were recorded. Seed cotton yield (q/ha) was also recorded. The economics parameters like total cost of cultivation, total income and benefit of cost ratio were worked out.

RESULTS AND DISCUSSION

With regard to leaf hopper, the mean population of leafhopper observations showed that the leafhoppers ranged from 2.39 to 5.53/3leaves. The lowest pest population was recorded in plots treated with 3 G extract (10%) (2.39/3)leaves). It was followed by neem oil (2%) (2.53/ 3leaves), herbal insect repellent (10%) (2.70/3 leaves) and statistically on par with other treatment when compared to untreated check (5.53/3leaves) (Table 1). With regard to whitefly, the mean population of whitefly showed that the whitefly ranged from 1.10 to 2.99/3 leaves. The lowest pest population was recorded in plots treated with 3 G extract (10%) (1.10/3 leaves). It was followed by *neem* oil (2%) (1.12/3 leaves), herbal insect repellent (10%) (1.12/3 leaves) and statistically on par with other treatment when compared to untreated check (2.99/3leaves) (Table 1). With regard to thrips, the mean population of thrips showed that the thrips ranged from 1.35 to 3.56/3 leaves. The lowest pest population was recorded in plots treated with 3 G extract (10%) (1.35/3 leaves). It was followed by neem oil (2%) (1.32/3leaves), herbal insect repellent (10%) (1.35/3 leaves) and statistically on par with other treatment when compared to untreated check (3.56/3leaves) (Table 1).

The influence of organic insecticides application on the production of sympodia and monopodia though not significant but plant height and bolls / plant was significantly affected by the application of organic insecticides (Table 2). The effect of application of 3 G extract (10%), *neem* oil (2%) and herbal insect repellent

Treat-	Dose	Leaf	Leaf hopper/3 leaves#	# S	4	Whitefly/3 leaves#	#	L	Thrips/3 leaves#	#		Yield (q/ha)	
ment	Formulation (ml/l)	2017	2018	Mean	2017	2018	Mean	2017	2018	Mean	2017	2018	Mean
T1	50	4.88ef(2.20)	4.01c(2.00)	4.45	1.69bc(1.30)	1.37abc(1.17)	1.53	2.41d(1.55)	2.25b(1.50)	2.33	10.10cd(3.17)	19.07cd	14.59
Т2	100	3.09abc(1.75)	2.31ab(1.52)	2.70	1.28ab(1.13)	0.86a(0.93)	1.12	1.38ab(1.17)	1.31a(1.15)	1.35	11.70ab(3.50)	20.92ab	16.31
Т3	50	4.76ef(2.18)	3.40bc(1.84)	4.08	1.68 bc(1.29)	1.22ab(1.10)	1.58	1.93abcd(1.38)	1.75ab(1.32)	1.84	10.00cd(3.12)	19.20cd	14.60
T4	100	3.01ab(1.73)	1.76a(1.33)	2.39	1.32abc(1.14)	0.76a(0.87)	1.10	1.44abc(1.2)	1.26a(1.12)	1.35	11.40abc(3.40)	21.89a	16.65
TS	20	4.03cde(2.00)	3.73c (1.93)	3.88	1.51ab(1.22)	1.39ab(1.18)	1.81	2.23cd(1.49)	2.38b(1.54)	2.31	10.20cd(3.13)	18.26d	14.23
Т6	20	3.37abcd(1.83) 4.41cd(2.10)	4.41 cd(2.10)	3.89	1.82cd(1.34)	1.70bc(1.30)	1.95	2.20cd(1.48)	2.32b(1.52)	2.26	10.15bcd(3.18)	18.88d	14.49
Т7	20	2.83(1.68)	2.23ab(1.49)	2.53	1.04a(1.01)	1.22abc(1.10)	1.12	1.01a(1.00)	1.63ab(1.28)	1.32	12.90a(3.59)	19.95bc	16.43
T8	20	4.20adef(2.04)	3.46bc(1.86)	3.83	1.48abc(1.21)	2.23cd (1.49)	2.27	2.30bcd(1.51)	2.60bc(1.61)	2.45	10.30bcd(3.20)	20.41b	15.36
Т9	10	3.90bcdef(1.97) 4.59cd(2.14)	4.59cd(2.14)	4.25	2.05cd(1.43)	1.82bc (1.39)	2.13	2.44cd(1.56)	2.35b(1.53)	2.40	9.90cd(3.14)	18.53d	14.22
T10		5.17(2.7)	5.89d(2.43)	5.53	2.45d(1.56)	2.90d(1.70)	2.99	3.08d(1.75)	4.03c	3.56	8.60d(2.93)	17.06e	12.83
SEd		0.1153	0.1857		0.116	0.1701		0.224	0.1861		0.153	0.0537	
CD (p=0.5)	.5)	0.24^{**}	0.3902		0.24^{**}	0.3574		0.47**	0.3910 **		0.32^{**}	0.1129	
CV (%)		7.21	12.25		11.64	17.27		19.60	15.77		5.80	1.49	

ystem
ecos
cotton
in c
sts
sucking pe
against
insecticides
organic i
the
study
То
÷
Table

mean of three spraying

Herbal repellent for sucking pests

TreatmentNo.	Pla	Plant height (cm)		Syr	Sympodia/plant		Mc	Monopodia/plant	ıt		Bolls/plant	
	2017	2018	Mean	2017	2018	Mean	2017	2018	Mean	2017	2018	Mean
TI	77.80	96.70	87.25	14.13	16.46	15.30	0.27	1.40	0.84	17.11	19.07	18.09
72.	84.13	104.30	94.22	14.60	17.62	16.11	0.40	1.52	0.96	19.17	20.92	20.05
T3.	80.67	98.90	89.79	14.13	17.25	15.69	0.33	1.31	0.82	17.03	19.20	18.12
T4.	79.07	98.10	88.59	14.27	17.22	15.75	0.40	1.56	0.98	19.13	21.89	20.51
TS	78.40	97.40	87.90	13.33	16.56	14.95	0.27	1.46	0.87	17.17	18.26	17.72
T6.	78.20	97.80	88.00	14.40	17.20	15.80	0.27	1.38	0.83	17.48	18.88	18.18
T7	84.27	103.80	94.04	14.00	17.08	15.54	0.40	1.39	06.0	19.60	19.95	19.78
T8.	83.93	102.10	93.02	13.67	17.17	15.42	0.33	1.51	0.92	17.66	20.41	19.04
T9	75.87	94.50	85.19	13.93	16.81	15.37	0.20	1.49	0.85	16.13	18.53	17.33
T10	72.73	91.60	82.17	13.30	16.39	14.85	0.13	1.56	0.85	15.17	17.06	16.12
SEd	3.868	4.15		I	I			ı		1.404	1.53	
CD (p=0.5)	8.134	8.67		NS	NS			NS		2.952	3.19	

10	
11	
11	
11	
11	:
11	
11	
11	
11	
11	
11	t
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	•
11	
11	
11	
11	
11	
11	i
11	
1	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
11	
	1
11	1
1	
1	
11	
	,
1	E

Table 3. Effect of organic insecticide application on economics of cotton

Treatment	Cost o	Cost of cultivation(Rs/ha)	₹s/ha)	Tota	Total income (Rs/ha)	ha)	Net	Net income (Rs/ha)	ha)	Be	Benefit cost ratio	tio
No.	2017	2018	Mean	2017	2018	Mean	2017	2018	Mean	2017	2018	Mean
T1	36900	41900	39400	52520	68448	60484	15620	26548	21084	1.42	1.63	1.52
72.	37300	42300	39800	60840	75946	68393	23540	33646	28593	1.63	1.8	1.71
T3.	37900	42900	40400	52000	62330	57165	14100	19430	16765	1.37	1.45	1.41
T4.	39300	44300	41800	59280	74980	67130	19980	30680	25330	1.51	1.69	1.60
TS	37400	41300	39350	53040	63158	58099	15640	21858	18749	1.42	1.53	1.475
T6.	37250	42250	39750	52780	61686	57233	15530	19436	17483	1.42	1.46	1.44
TT	37400	42400	39900	67080	74152	70616	29680	31752	30716	1.79	1.75	1.77
T8.	36700	40700	38700	53560	64906	59233	16860	24206	20533	1.46	1.59	1.52
6L	37150	42150	39650	51480	60766	56123	14330	18616	16473	1.39	1.44	1.41
T10	35000	40000	37500	44720	57638	51179	9720	17638	13679	1.28	1.44	1.36

Sasikumar, Veeraputhiran and Vimala

(10%), produced taller plants and more bolls / plant and these three treatments were comparable and significantly higher than untreated check (Table 2).

The mean, highest cotton kapas yield was recorded in 3G extract (10%) (16.65%), neem oil (2%) (16.43%) and herbal insect repellent (10%) (16.31 q/ha) and were significantly higher than the untreated check (10.56 q/ha). The economic analysis revealed that highest total income (Rs. 67130/ha), net income (Rs. 25330/ ha) and benefit cost ratio (1.60) were also associated with application of 3G extract (10%) which was on par with neem oil (2%) (Table 3). Possession of antifeedent property by neem and pungam leaf was proved earlier by several workers (Chocklingam et al., 1983 and Devakumar et al., 1986) reported moderate efficacy of neem products against the cotton whitefly, Bemisia tabaci. Though different botanical pesticides used were less effective, they are safer and less costly alternatives to chemical control. Similar results were reported by many earlier workers (Mastoli et al., 1995; Hofte, 1999). Thus utilization of botanical pesticides possess the advantages of reducing the pollution burden of the environment occurring due to toxic pesticides and also protect the beneficial fauna and biodiversity in the cotton agro-ecosystem.

CONCLUSION

Spraying of organic insecticide, 3G extract (10%), *neem* oil (2%) and herbal insect repellent (10%) was found to be significantly

effective against the sucking pests (leaf hopper, whitefly and thrips) in cotton and also produced significantly taller plants, bolls / plant and also higher seed cotton yield besides higher economic returns.

ACKNOWLEDGEMENT

The authors are very much thankful to the Professor and Head, Cotton Research Station, Srivilliputtur of the institution for their kind support in performing the research work.

REFERENCES

- Chockalingam, S., Vasantha, E. And Somasundaram, P. 1983. Efficacy of *Neem* Oil Extractive (NOE) against *Spodoptera litura*. *Orient Zool*, **3** : 59-64.
- Dhawan, A. K. 1998. Integrated pest management in cotton. *Pestology*, **22** : 62-74.
- Gahukar, R.T. 1997. Production and utilization of potential biological control agents Cotton insect pest in India. *Pestology*, 21 : 28-48.
- Mastoli, B.B., Mottolkar, P.R. and Mote, U.N. 1995. Studies on efficacy of Bioinsecticides against bollworm complex of cotton. *Pestology*, 19 : 27-29.
- Hofte, M. 1999. Recent advances in the biological control of plant pathogens, Special Issues on IPM. *Pestology*, 180-93.

Received for publication : January 10, 2020 Accepted for publication : April 25, 2020