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Effect of Drought Stress on Biochemical Constituents and Seed
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Abstract : A field experiment was conducted over two consecutive years (2021-2022 and 2022-2023) under both
drought and controlled (rainfed) conditions. Seventeen genotypes were evaluated for Relative Water Content
(RWC), Specific Leaf Weight (SLW), soluble protein, and proline content, using standard protocols. The results
indicated that RWC, SLW seed cotton yield, and average boll weight decreased under water deficit conditions,
while soluble protein and proline content increased. These findings suggest that the levels of soluble protein and
proline rise with prolonged exposure to stress conditions.
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Drought, a significant environmental
stressor affecting cultivated lands globally, is
known to result in a substantial decline of upto
50 per cent in agricultural yields (Sahitya et al.,
2019). The adverse impacts of drought stress on
plant growth, development, and overall
productivity have been well documented in
various studies (Ge et al, 2012; Talaat et al,
2015; Hasan, Alharby, et al., 2020). Crop plants
exhibit diverse responses to drought stress,
encompassing morphological, physiological, and
biochemical adaptations (Hussain et al., 2020;
Alabdallah et al., 2021). Reactive Oxygen Species
(ROS) production increases under drought
stress, posing a threat to plant health. However,
plants have evolved antioxidant defense
mechanisms and heightened synthesis of
antioxidant enzymes to counteract the
detrimental effects of ROS (Hasan, Ali, et al.,
2020; Hasan et al.,, 2021; Sohag et al.,, 2020;
Alharbi et al., 2021). Drought stress induces the
accumulation of biochemicals such as proline,
protein, sucrose, and glycine betaine,
contributing to enhanced crop production by
mitigating the impact of ROS induced oxidative
stress (Perveen and Hussain, 2021). Physiological
systems in plants, including cellular respiration,

photosynthetic rate, mineral nutrition, enzymatic
activity, and Redox homeostasis, are influenced
by drought stress regimes. Conditions of water
scarcity lead to the degradation of vital
biochemicals such as membrane lipo proteins,
DNA, and cellular protein composition (Khan et
al.,2021).

MATERIALS AND METHODS

The study was conducted on 17 upland
cotton genotypes at the cotton research area,
CCS Haryana Agricultural University, Hisar.
Sowing was done on May 10th, 2021 and May 4th,
2022 by manually dibbling method on the well
prepared plots with row to row spacing of 67.5 cm
and plant to plant spacing of 30 cm. in a split plot
design along with two replications. After sowing no
irrigation was given, crop was grown under only
rainfed conditions for drought plot, whereas three
flood irrigations were given in the control plots.

All the recommended practices were
followed to raise a healthy crop. Five plants were
tagged in each plot and replications for recording
of the observation. The physiological and
biochemical constituents were recorded between
60-90 days after sowing and after attaining the
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less soil water potential as recorded from the
drought plot. Relative water content (RWC) and
specific leaf weight SLW) were estimated by the
method with formula mentioned below.

Initially, the fresh weight of the leaves
was measured. The leaves were then placed in 20
ml of distilled water in petri dishes and left for 24
hours in diffused light. After this period, the
surface water was carefully blotted off using filter
papers, and the turgid weight of the leaves was
recorded. Finally, the leaves were dried in an
oven and weighed. It was calculated with the
following formula:

Fresh Weight - Dry Weight 100
Fully Turgid Weight - Dry Weight

RWC (%) =

Specific leaf weight was calculated with the
following formula:

Total Dry Weight (g)
Total Leaf Area (cm)

Specific Leaf = 1000

Weight (mg cm?2)

The total soluble protein was estimated
using the method developed by Lowry et al
(1951), while the proline content was measured
using the acid ninhydrin method.

Data of yield attributing characters was
recorded from each plot’s five tagged plants, and
each plot’s seed cotton yield was recorded and
converted into kilogram per hectare.

RESULTS AND DISCUSSION

The relative water content (RWC)
decreased under rainfed conditions compared to
irrigated conditions (Fig 1). In 2022, genotypes H
1529, H 1530, H 1581, H 1553, and H 1564
showed a minimal reduction in RWC by 70.49,
69.23, 67.88, 68.58 and 67.36 per cent under
rainfed conditions, respectively. In 2023,
genotypes H 1530, H 1529, H 1539, H 1480, and H
1564 exhibited a minimal reduction in RWC by
72.53, 76.88, 53.53, 73.72, and 67.40 per cent
respectively under rainfed conditions.

The specific leaf weight (SLW) increased
in most genotypes as depicted in Fig 2. In 2022,

genotypes H 1529, H 1581, H 1564, and H 1530
showed the maximum increase in SLW by 7.13,
6.60, 6.03, and 6.29 (mg/cm?2) under rainfed
conditions compared to irrigated control. In
2023, genotypes H 1521, H 1528, H 1557, and H
1491 exhibited the highest increase in SLW by
7.15,6.69, 6.56, and 6.36 (mg/cm?2) under rainfed
conditions as compared to irrigated control.

As shown in Fig 3, the soluble protein
content increased in most genotypes under
rainfed conditions compared to irrigated
conditions. In 2022, data showed a significant
rise in soluble protein across all genotypes under
rainfed conditions, with a smaller increase of 3.0,
3.31, and 2.92 per cent observed in genotypes H
1539, H 1530, and H 1480, respectively. In 2023,
soluble protein levels generally increased under
rainfed conditions for most genotypes but
decreased by 1.07, 1.05, 1.17, 1.28, 1.11, and
1.28 per cent in genotypes H 1528, H 1557, H
1569,H 1566,H 1533, and H 1553, respectively.

The proline content increased in most
genotypes under rainfed conditions compared to
irrigated conditions (Fig 4). In 2022, the highest
and lowest proline contents were observed in
genotypes H 1521 and H 1539, at 0.86 and 1.61
(umoles/g) under rainfed conditions respectively.
Genotypes H 1529, H 1581, H 1553, H 1530, and
H 1569 showed the maximum increases in proline
content under rainfed conditions, with values of
1.26, 1.34, 1.28, 1.68, and 1.36 (umoles/g)
respectively as compared to irrigated control. In
2023, proline content increased in most genotypes
under rainfed conditions as compared to irrigated
conditions. The highest and lowest proline
contents were observed in genotypes H 1480 and H
1521, at 1.81 and 0.94 (umoles/g) under rainfed
conditions respectively. Genotypes H 1530,
H 1529, H 1581, and H 1564 showed the
maximum increase in proline content, with
values of 1.76, 1.71, 1.62, and 1.62 (umoles/g),
respectively as compared to irrigated control. The
average boll weight was significantly higher in
most genotypes when irrigated as shown in Fig 5.
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In 2022, the highest seed cotton yields
were recorded for genotypes H 1566 under
irrigated conditions and H 1530 under rainfed
conditions. There is a significant difference in
cotton seed yield between irrigated and rainfed
conditions. However, the smallest reduction in
yield was observed in genotype H 1529,
followed by H 1581, H 1553, H 1539, and H
1564. In 2023, genotype H 1530 achieved the
highest seed cotton yield under both irrigated
and rainfed conditions. The yield under
irrigated conditions differed significantly from
rainfed conditions, with the smallest decrease
seen in H 1530, followed by H 1529, H 1539, H
1547, and H 1553.

Cells play a crucial role in responding to
stress by initiating a defense mechanism
through changes in gene expression patterns.
Stress triggers qualitative and quantitative
alterations in proteins, affecting various
pathways involved in cellular metabolism and
stress defense. Abiotic stresses, such as drought,
can lead to protein dysfunction, altering the
levels of organization in soluble and structural
proteins (Timperio et al, 2008). In a study
conducted by Li et al. in 2010, the soluble protein
content of stem leaves was examined under
drought treatments and control conditions.
Under control conditions, the soluble protein
content gradually declined and remained low
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Fig. 1. Effect of drought stress on relative water content in upland cotton plant leaves.
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Fig. 2. Effect of drought stress on specific leaf weight in upland cotton plant leaves.
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until the final leaf harvest on September 5th.
However, in leaves subjected to drought, the
soluble protein content initially decreased but
significantly rose above that of the control leaves
by the final harvest date. Furthermore, on all
previous sampling days except during August,
the soluble protein levels were notably higher
than those of the control, indicating that drought
stress might induce an increase in soluble leaf
protein content. This elevation could be
attributed to reduced water content in plant
tissues and heightened levels of osmotic

substances under drought stress conditions.
Similarly, in our investigation, soluble protein
content was observed to increase under rainfed
conditions (stress conditions) compared to
controlled (irrigated) conditions. This finding
correlates with the conclusions of Li et al. 2010,
suggesting that environmental stressors, like
drought, could trigger a rise in soluble protein
content as part of the plant’s defense mechanism.
The increased production of antioxidants, both
enzymatic and non-enzymatic, as well as crucial
osmoprotectants like proline and various organic
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Fig. 3. Effect of drought stress on soluble protein in upland cotton plant leaves.
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Fig. 4. Effect of drought stress on proline in upland cotton plant leaves.
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compounds, represents an adaptive strategy in
plants to combat oxidative stress (Zulfigar et al.,
2020; Zulfiqar et al., 2021). Proline, an essential
amino acid, is widely present in plants
experiencing stressful conditions and plays a
crucial role in protein metabolism (Wang et al.,
2014; Kavi Kishor et al., 2015; Guan et al., 2020).
It contributes to stabilizing proteins and
enzymes, storing and transferring metabolic
energy, osmoregulation, osmoprotection, metal
chelation, and signal transduction (Ashraf &
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Foolad, 2007; Guan et al.,, 2020). The levels of
proline are affected by the type and severity of
stress, as well as differences among species
(Delauney and Verma, 1993; Hare and Cress, 1997;
Hayat et al, 2012). Acting as a non-enzymatic
antioxidant, proline can neutralize singlet oxygen,
superoxide, and hydroxyl radicals, contributing
to the plant’s defense against oxidative stress
(Matysik et al., 2002; Szabados and Savouré,
2010; Signorelli, 2016; Rady et al.,, 2019),
although its efficacy in quenching singlet oxygen
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has been debated. In our current research, we
observed an increase in proline content under
stressed conditions (rainfed) and lower levels
under controlled conditions (irrigated). A similar
study by Zameer et al., (2022) noted that proline
content was initially low in both transgenic and
non-transgenic plants before stress application
but increased following stress exposure. Non-
transgenic plants exhibited higher proline
content at both O and 5 days compared to
transgenic plants, suggesting a possible
correlation between elevated proline levels and
reduced membrane stability under stress
conditions. Proline, being an osmolyte and
organic compound, typically poses no harm to
plant cells even at high concentrations. Its
synthesis and accumulation patterns vary
among plants, with a gradual increase in drought
stress triggering proline accumulation in water
stressed cotton plants (Zandalinas et al., 2018).
In their study on chickpeas, Zandalinas et al.
(2018) found that transgenic plants exhibited
lower proline accumulation than non transgenic
plants at 5 days, indicating higher tolerance and
survival ability under stress conditions and
stability in adverse climates. The relative water
content (RWC) is a commonly used indicator for
assessing plant water status and is believed to
reflect the metabolic rate in tissues. The
relationship between RWC and crop yield under
water stress conditions further supports this
(Anaytullah et al., 2007). The growth of cotton is
significantly impacted by a variety of morpho-
physiological and metabolic changes induced by
drought stress. Severe stress conditions lead to a
reduction in plant height, dry matter production,
and leaf area index, as well as a decrease in the
number of nodes Wang et al., (2017). Dalvi et al.,
(2019) evaluated 20 cotton genotypes for growth,
physiological parameters, and yield parameters
under both irrigated and water deficit rainfed
conditions, finding a decrease in specific leaf
weight under water deficit conditions, which is in
accordance with our results. Qian et al., (2020)
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carried out a lysimeter experiment to examine
how different cotton yield indices respond to
water stress conditions, which included flooding
(for five and eight days), drought (for 10 and 15
days), and a five day flood followed by a 10 day
drought during the flowering and boll formation
stages. The findings indicated a significant
reduction in seed cotton yield across all water
stress treatments which is in accordance with
our results. Asif et al, (2023) analyzed the
morphological, physiological, and fiber quality
parameters associated with drought tolerance,
employing a comprehensive approach to select
superior genotypes from 150 cotton varieties.
These were evaluated under both regular and
water stressed conditions over two consecutive
seasons (2015-2016 and 2016-2017). They
found that the average boll weight significantly
decreased under water stressed conditions,
which is in accordance with our findings.
Drought stress poses a significant challenge to
crop growth and productivity globally, prompting
plants to employ various mechanisms to mitigate
its adverse effects. One such adaptive strategy
involves the production of antioxidant enzymes
and non-antioxidant osmolytic substances like
proline and glycine betaine. In our current study,
we observed an increase in soluble protein
content and proline concentration with
escalating drought stress intensity.

CONCLUSION

The growth of cotton is significantly
impacted by a variety of morpho physiological
and metabolic changes induced by drought
stress. Severe stress conditions lead to a
reduction in plant height, dry matter production,
and leaf area index, as well as a can lead to
protein dysfunction, altering the levels of
organization in soluble and structural proteins.
This elevation could be attributed to reduced
water content in plant tissues and heightened

levels of osmotic substances under drought-
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stress conditions. Drought stress poses a
significant challenge to crop growth and
productivity and plant employ antioxidant like
mechanism to mitigate its adverse effect. By
employing biotechnological and breeding
approaches, we have the potential to enhance the
drought tolerance of cotton crops. Thorough and
rigorous multi locational trials are essential to
evaluate the performance of these genetically
modified genotypes.
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